
Software Engineering

Computer Science Tripos 1B
Michaelmas 2011

Richard Clayton

Tools

• Homo sapiens uses tools when some parameter of a task
exceeds our native capacity

• heavy object: raise with lever
• tough object: cut with axe

• Software engineering tools are designed to deal with complexity

• There are two types of complexity:
• incidental complexity dominated programming in the early days,

e.g. keeping track of stuff in machine-code programs
• intrinsic complexity is the main problem today, e.g. complex

system (such as a bank) with a big team. ‘Solution’: structured
development, project management tools, …

• We can aim to eliminate the incidental complexity, but the
intrinsic complexity must be managed

Incidental complexity I

• The greatest single improvement was the invention of high-level
languages like FORTRAN

• 2000 LOC/year goes much farther than assembler
• code easier to understand & maintain: appropriate abstraction, data

structures, functions, objects rather than bits, registers, branches
• structure lets many errors be found at compile time
• code may be portable; at least, machine-specific details containable
• performance gain: 5–10 times! But coding = 1/6 cost, so better

languages give diminishing returns

• Most advances since early HLLs focus on helping programmers
structure and maintain code

• don’t use ‘goto’ (Dijkstra 68), structured programming, Pascal
(Wirth 71); info hiding plus proper control structures

• OO: Simula (Nygaard, Dahl, 60s), Smalltalk (Xerox 70s), C++,
Java, etc … all well covered elsewhere

Incidental complexity II

• Don’t forget the object of all this is to manage complexity!

• Early batch systems were very tedious for developer

• Time-sharing systems allowed online test – debug – fix –
recompile – test – …

• this still needed plenty of scaffolding and a carefully thought out
debugging plan

• Led on to integrated programming environments such as TSS,
Turbo Pascal, Microsoft Visual Studio…

• Some of these started to support tools to deal with managing
large projects – ‘CASE’ (computer aided software engineering)

Formal methods

• Pioneers such as Turing talked of proving programs correct

• Floyd (67), Hoare (71), … now a wide range:
• Z for specifications
• HOL for hardware
• BAN for crypto protocols

• These are not infallible (a kind of multiversion programming)
but can find a lot of bugs, especially in small, difficult tasks

• Not much use for big systems

• Much use of rule-based systems that look for suspicious code
• lint
• Coverity (see Comm ACM: “A few billion lines of code later”)
• in-house tools at Microsoft, Google, Yahoo! etc.

Programming philosophies I

• `Chief programmer teams’ (IBM, 70–72)
• capitalises on the wide productivity variance
• team of chief programmer, apprentice, toolsmith, librarian, admin

assistant etc., to get maximum productivity from your staff
• can be effective during implementation
• but each team can only do so much
• why not just fire the less productive programmers?

• ‘Egoless programming’ (Weinberg, 71) – code should be
owned by the team, not by any individual. In direct opposition
to ‘chief programmer team’

• but: groupthink entrenches bad stuff more deeply

Programming philosophies II

• ‘Literate programming’ (Knuth et al)
• code should be a work of art, aimed not just at machine but also

future developers
• but: creeping elegance is often a symptom of a project slipping out

of control

• ‘Extreme programming’ (Beck, 99)
• aimed at small teams working on iterative development with

automated tests and short build cycle
• ‘solve your worst problem, repeat’
• focus on development episode: write the tests first, then the code.

‘The tests are the documentation’
• programmers work in pairs, at one keyboard and screen
• new-age mantras: “embrace change” “travel light”

Capability maturity model

• Humphrey, 1989 (developed at CMU with DoD money)
• important to keep teams together, as productivity grows over time
• nurture the capability for repeatable, manageable performance, not

outcomes that depend on individual heroics

• Identifies five levels of increasing maturity in a team or
organisation, and a guide for moving up

1. Initial (chaotic, ad hoc) – starting point for use of a new process
2. Repeatable – the process is able to be used repeatedly, with

roughly repeatable outcomes
3. Defined – the process is defined/confirmed as a standard business

process
4. Managed – the process is managed according to the metrics

described in the Defined stage
5. Optimized – process management includes deliberate process

optimization/improvement

Project management

• A manager’s job is to
• plan
• motivate
• control

• The skills involved are interpersonal, not techie; but managers
must retain respect of techie staff

• Growing software managers is a perpetual problem!
• ‘managing programmers is like herding cats’

• Nonetheless there are some tools that can help

Activity charts

• ‘Gantt’ chart (after inventor) shows tasks and milestones

• Problem: can be hard to visualize dependencies

Critical path analysis

• Project Evaluation and Review Technique (PERT): draw activity
chart as graph with dependencies

• Gives the critical path (here, two) and shows slack

• Can help maintain ‘hustle’ in a project

• Also helps warn of approaching trouble

Keeping people motivated

• People can work less hard in groups than on their own projects
• the ‘free rider’ or ‘social loafing’ effect

• Competition doesn’t invariably fix it: people who don’t think
they’ll win stop trying

• Dan Rothwell’s ‘three C’s of motivation’:
• collaboration – everyone has a specific task
• content – everyone’s task clearly matters
• choice – everyone has a say in what they do

• Many other factors
• acknowledgement, attribution, equity, leadership
• and ‘team building’ (shared food / drink / exercise / other bonding

activities)

Agency issues

• Employees often optimise their own utility, not the projects;
e.g. managers don’t pass on bad news

• People prefer to avoid residual risk issues: risk reduction
becomes due diligence

• Tort law reinforces herding behaviour: negligence judged ‘by
the standards of the industry’

• Cultural pressures in e.g. aviation, banking

• The result is: do the checklists, use the tools that will look good
on your CV, hire the big consultants…

Testing I

• Testing is often neglected in academia, but is the focus of
industrial interest … it’s half the cost

• Important to make bugs reproducible & repeatable

• Bill Gates: “are we in the business of writing software, or test
harnesses?”

• Happens at many levels
• design validation
• module test after coding
• system test after integration
• beta test / field trial
• subsequent litigation

• Cost per bug rises dramatically as we go down this list!

Testing II

• Main advance in last 15 years is design for testability, plus
automated regression tests

• fuzzing now used to generate test cases
• fuzzing works well with assertions…

• Regression tests check that new versions of the software give
same answers as old version

• customers more upset by failure of a familiar feature than at a new
feature which doesn’t work right

• without regression testing, 20% of bug fixes reintroduce failures in
already tested behaviour

• reliability of software is relative to a set of inputs – best use the
inputs that your users generate

Testing III

• Reliability growth models help us assess MTBF, number of bugs
remaining, economics of further testing…

• Failure rate due to one bug is e-k/T; (for T tests, where k
expresses how much the bug affects test output)

• With many bugs this sums to k/T

• So for 109 hours MTBF, must test 109 hours

• But: changing testers brings new bugs to light

time

bugs

tester1
tester2 tester3 tester4

Testing IV

• The critical problem with testing is to exercise the conditions
under which the system will actually be used

• Many failures result from unforeseen input / environment
conditions (e.g. Patriot)

• Incentives matter hugely: commercial developers often look for
friendly certifiers while the military arranges for a hostile review
(ditto manned spaceflight, nuclear)

• Just as some people are good at programming, some are good
at testing. Typical results from a beta test are that a handful of
people will each identify 10 times as many bugs as any other
tester – and there will be similar variations in the ability of
testers to tell you what they were doing before the failure!

Release management

• Getting from development code to a production release can be
nontrivial!

• Main focus is stability – check recently-evolved code, test with
lots of hardware versions, etc.

• Add all the extras like copy protection, rights management

• Code freeze impacts work on future developments, so usual
practice is to fork the source tree, but then you need to merge
bug fixes back into the main branch…

create test
release branch

continue on-going development

release

prepare for
release

bug fixes

Example – NetBSD release

• Beta testing of release

• Then security fixes

• Then minor features

• Then more bug fixes …

Change control

• Change control and configuration management are critical yet
often poor

• Commit messages (in revision control) matter! And they’re not
written for your benefit, but for others

• The objective is to control the process of testing and deploying
software you’ve written, or bought, or got fixes for

• Someone must assess the risk and take responsibility for live
running, and look after backup, recovery, rollback etc.

Development

Purchase

Test Production

Documentation

• Think: how will you deal with management documents
(budgets, PERT charts, staff schedules)

• and engineering documents (requirements, hazard analyses,
specifications, test plans, code)?

• CS tells us it’s hard to keep stuff in synch!

• Possible partial solutions:
• high tech: CASE tool
• bureaucratic: plans and controls department
• social consensus: style, comments, formatting

• Key issue is that code needs to be readable
• not just executed (in fact that’s relatively rare)
• you have to have layout standards (or they will reformat it)
• you have to comment! So they [and you] can work out if the bug is

doing the wrong thing right, or doing the right thing wrong

;
;====================
!ROUTINE: WRITE LOCAL
;====================
;
; WRITE A STRING OF BYTES TO THE FILE FROM A LOCAL VAREA
;
!REQUIRE: DXAX : FILE ADDRESS
!REQUIRE: CX : BYTES TO WRITE
!REQUIRE: DS.BX : BUFFER ADDRESS
!REQUIRE: SS.BP : STACK FRAME
!REQUIRE: DS : VAR SEGMENT
!REQUIRE: SS : STACK SEGMENT
;
!PRODUCE: DI.SI : -> STREAM
!CORRUPT: F AX BX CX DX ES : ALL OTHER REGISTERS PRESERVED
;

LES, SI, SF RED TAPE [BP]
;

MOVW.ES, DI, RT STREAM + 2 [SI]
MOVW.ES, SI, RT STREAM + 0 [SI] ;-> STREAM
CALL, SEEK TO POS ;SET CURRENT POSITION

;
PUSH DS
POP ES ;ES.BX = BUFFER ADDRESS

!CONFIRM: * = WRITE HERE ;WRITE THE BYTES
;
;===================
!ROUTINE: WRITE HERE
;===================
;
; WRITE A STRING OF BYTES TO THE FILE AT THE CURRENT POSITION
;
!REQUIRE: ES.BX : BUFFER ADDRESS
!REQUIRE: CX : BYTES TO WRITE
!REQUIRE: DI.SI : -> STREAM
!REQUIRE: DS : VAR SEGMENT
!REQUIRE: SS : STACK SEGMENT
:

// ===============
FUNC BOOL XFile::ReadLine PUBLIC
// ===============
//
// read a line from the file
// returns FALSE if an error
// at EOF it sets the variable TRUE (and returns an empty line)
// EOF is latched
// note that the string has any trailing #0A or #0D stripped
//
(

XString & string, // result string
BOOL & at_eof, // set TRUE iff eof
const BOOL support_soft_eof

DEFAULT(TRUE) // TRUE=> #1A is soft eof
)
{

SingleLock lock(*this);

ASSERT(isOpen);

at_eof = seen_eof; // at eof already?

WORD nRead = 0;
WORD line_size = 128; // pretty unlikely to need more
BOOL ret_value = TRUE;

TCHAR * pline = (TCHAR *)string.GetBufferSetLength(line_size);

// at_sol TRUE first time round

for (BOOL at_sol = TRUE; !seen_eof; at_sol = FALSE)
{

BYTE chara;
VERIFY(btpack.Lock());
ret_value = BU_ReadChar(info, chara);
VERIFY(btpack.Unlock());

Problems of large systems I

• Study of failure of 17 large demanding systems, Curtis Krasner
and Iscoe 1988. Causes were:

1. thin spread of application domain knowledge
2. fluctuating and conflicting requirements
3. breakdown of communication, coordination

• Very often linked & typical progression to disaster was 1→2→3

#1: Thin spread of application domain knowledge
• how many people understand everything about running a phone

service / bank / hospital ?
• many aspects are jealously guarded secrets
• some fields try hard, e.g. pilot training
• or with luck you might find a real ‘guru’
• but you can expect specification mistakes

Problems of large systems II

#2 The spec may change in midstream anyway
• competing products, new standards, fashion
• changing environment (takeover, election, …)
• new customers (e.g. overseas) with new needs

#3 Communications problems inevitable
• N people means N(N-1)/2 channels and 2N subgroups
• traditional way of coping is hierarchy; but if info flows via ‘least

common manager’, bandwidth inadequate
• so you proliferate committees, staff departments
• this causes politicking, blame shifting
• management attempts to gain control, results in restricting many

interfaces, e.g. to the customer

Conclusions

• Software engineering is hard, because it is about managing
complexity

• we can remove much incidental complexity using modern tools
• but the intrinsic complexity remains: you just have to try to

manage it by getting early commitment to requirements,
partitioning the problem, using project management tools

• Top-down approaches can help where relevant, but really large
systems necessarily evolve

• Things are made harder by the fact that complex systems are
usually socio-technical

• People come into play as users, and also as members of
development and other teams

Conclusions

• About 30% of big commercial projects fail, and about 30% of
big government projects succeed. This has been stable for
years, despite better tools!

• Better tools let people climb a bit higher up the complexity
mountain before they fall off

• But the limiting factors are generally human

